
Phase-Lock Loop (PLL)
and

Testing with LabVIEW

By
Kyle Pierce

NSF-REU at the University of Maine

Summer 2001

Advisor
Dr. David Kotecki

ABSTRACT

The overall goal of this project was to characterize a fabricated phase-lock loop (PLL)

that was designed by students in Prof. Kotecki’s fall VLSI design class and to set up a

testing station with LabVIEW. In order to characterize the PLL, tests were performed as

directed by the students’ test procedure on digital buffers, inverters, exclusive-or phase

detectors, voltage controlled oscill ators, passive filters, as well as the entire loop. These

tests were preformed on the packaged integrated circuit at room temperature with

standard lab equipment (multimeter, oscill oscope, voltage supply, and function

generator). To aid in testing the custom designed chip a testing platform incorporating

LabVIEW was created. The station automated the testing process through the use of

GPIB and graphical programming to control function generators and oscill oscopes.

ACKNOWLEDGMENTS

This work has been supported by the National Science Foundation Research

Experience for Undergraduates.

Many thanks also go to Dr. David Kotecki, my advisor, Dr. Donald Hummels,

Jesse Cousins for his background with the VLSI class and Cadence, and Kannan

Sockalingam for his help with LabVIEW.

LabVIEW is a registered trademark of National Instruments, Inc.

Matlab is a registered trademark of The MathWorks, Inc.

TABLE OF CONTENTS

ABSTRACT i

ACKNOWLEDGMENTS ii

1 Introduction 1
1.1 Background 1
1.2 Purpose of the Research 1
1.3 Thesis Organization 1

2 LabVIEW 2
2.1 What is LabVIEW? 2
2.2 Graphical Programming 2
2.3 Instrument Control and Data Acquisition 4
2.4 Linear Frequency Sweep 4

3 Phase-Lock Loop 5
3.1 Phase-Lock Loop 5
3.2 Inverter 5
3.3 Digital Buffer 6
3.4 Exclusive Or Phase Detector 7
3.5 Low Pass Flters 8
3.6 Voltage Controlled Oscill ator I 8
3.7 Voltage Controlled Oscill ator II 9
3.8 Entire Loop 10

4 Conclusions 12

5 Future Work 13

REFERENCES 14

APPENDIX A 15

CHAPTER 1

1.1 Background

As part of ECE547 VLSI Design / Layout, taught by Dr. Kotecki during the fall

semester 2000, students designed custom microchips. Four different designs were

produced: a Phase-Lock Loop, an Autoranger Circuit, a Proportional Integral Derivative

Circuit, and a Sigma-Delta Modulator. These microchips were fabricated by AMI using

a 0.5 micron process. For each design five 40 pin packaged chips and five dies were

produced. Due to when the chips arrived at the University of Maine very few verification

tests were performed.

1.2 Purpose of the Research

The primary goal of this summer research project was to characterize fabricated

chips designed by Dr. Kotecki’s VLSI class. In order to do this more efficiently both in

the present and future a testing platform was set up around LabVIEW with the eventual

abili ty to test both packaged and unpackaged chips. To aid the testing process further

programs to do things such as a frequency sweep were also created. As a direct

consequence of this research, future students will be able to test their designs easier than

ever before.

1.3 Paper Organization

I will start by discussing the benefits of LabVIEW and why it is useful.

Then I will explain how I used LabVIEW to set up a testing platform to test

custom chips. Finally, I will t alk about how well one of the custom designed

chips (PLL) performed when tested using the platform.

CHAPTER 2

2.1 What is LabVIEW?

LabVIEW is a graphical programming language used to control instruments and

acquire, analyze, and display data. LabVIEW was chosen because it is becoming more

and more an industry standard for testing, and is used by several high profile microchip

companies including Texas Instruments. One reason LabVIEW is so popular is due to

ease of use, flexibili ty, and portabili ty.

Every LabVIEW program is comprised of two main parts a front panel, user

interface, and a block diagram, the programming ‘statements’ . Once a program is created

the user only needs to know how to setup the testing equipment and how to use the front

panel (see Appendix A for example front panel).

2.2 Graphical Programming

Traditional computer programs consist of text based statements which follow a

linear top to bottom order of execution, such as BASIC. LabVIEW, on the other hand,

employs a graphical style of programming much like a circuit schematic. In contrast to

the stringent linearity of traditional programming, LabVIEW execution follows one line

until a block requiring more inputs is encountered. Then the program goes back and

follows the next line until the same result is reached. Once all the data lines reach a

given block the block is executed and the flow continues from the executed block.

In order to better understand LabVIEW’s programming language and example is

necessary (see Figure 1). At the top of the figure is an example program, to calculate the

area of a circle with radii 1 thru 5, created with LabVIEW, and at the bottom is the

corresponding program written in Matlab. Both programs are comprised of a FOR loop

that sets the radius r to 1, 2, 3, 4, and 5. In Matlab this is the first line and is closed like a

parenthesis by the END statement. The equivalent statement in LabVIEW is represented

by the dog-eared box which contains an i and N. The 5 tied to the N is the number of

times to loop, and i stands for the current iteration number.

Now that the FOR loop has been explained, the next item to discuss is the actual

calculation of the area. The second line of the Matlab program is where each area is

calculated and stored into an array with index r. Likewise, the area calculation in

LabVIEW is carried out inside the FOR box. The +1 is needed to add one to the iteration

number so that the loop runs from 1 to 5 instead of the default 0 to 4. Once one is added

to the current radius the next block squares the radius, and then is multiplied by pi. The

results are connected to an output array called area.

for r=1:5
 area(r)=pi.*r.^2
end

Figure 1

While graphical programming is not as compact and strictly ordered as traditional

programming it is able to be better understood by non-programmers than text programs.

While graphical programming is as easy as drag and drop, it may take considerably

area
5

2

longer to program than text because every command must be selected from a menu and

connected; however, by using text a programmer can program as fast as one’s typing.

2.3 Instrument Control and Data Acquisition

Although LabVIEW has the abili ty to perform calculations, such as area, li ke

other programming languages, its real power lies in the abili ty to easily communicate

with external instrumentation such as oscill oscopes, function generators, etc. While it is

possible to use external instruments with Matlab, the interface Labview provides is

extremely user friendly. In order to send a command to an external instrument all that is

needed is the command string, telli ng what to do; a session ID, identifying which device

to communicate with; and error messages, for debugging purposes. All these are

connected to the write function symbolized by W, as seen in Figure 2. Likewise, reading

data from an instrument is almost as easy. The following change: the command becomes

a query (usually ending with a question mark), a number is connected telli ng how much

data to receive, and a string is returned (see Figure 2). The abili ty to communicate with

external instruments within a programming environment provides engineers the abili ty to

automate the testing process.

Figure 2

2.4 Linear Frequency Sweep

By combining the abili ty to read and write to testing equipment with the abili ty of

a program to loop, an automated frequency sweep can be created (Appendix B). In this

case a linear frequency sweep was created. The front panel of this program gives the

sweep options and displays the data after all the measurements have been gathered.

Although the linear frequency sweep program may look complicated at first, it is

actually fairly simple once broken down. In the upper left hand side is the calculations

for what the step of the input frequency will be and whether to count up or down. Below

that are the initialization and the constant settings for the Agilent 15 MHz arbitrary

waveform generator (HP33120) and the Agilent 60 MHz oscill oscope (Ag54621a), only

these instruments may be used in order for this program to work properly because the

commands are instrument specific. The box to the right is a for loop, which is the main

body of the program. This loop systematically sets the input frequency, autoscales the

oscill oscope, takes an output frequency measurement, and measures the output voltage

peak to peak. After all the data has been collected, it is displayed on the front panel

which is represented in the diagram by the orange rectangles on the right.

An automated linear frequency sweep is very useful for test engineers because it

allows the engineer to sweep large ranges of frequencies using very small step sizes.

Also, since it is automated, someone does not have to tediously scroll through

frequencies and record the data. This is beneficial in two ways. First, the program can be

run overnight, or something else can be done while the program is running, thereby being

more productive. And second, since the data is already on the computer, it can be saved

to a file and analyzed later, eliminating data entry.

CHAPTER 3

3.1 Phase-Lock Loop

A phase-lock loop is a very useful circuit in computers and communication. This

is because its main purpose is to regenerate a clock signal from data. In the case of a cell

phone, only one signal is going to be transmitted to the phone from the tower. In order to

synchronize the phone and the tower a clock signal must be part of this signal. In order

to do this the clock is encoded with the data. The PLL’s job is to rip the clock off the

incoming signal. It does this by keeping the output and input at the same frequency and

in phase over a certain range, this PLL was designed for around 10MHz. The three main

blocks that make up the PLL, phase detector, loop filter, and voltage controlled oscill ator

can be found in Figure 3 below.

Figure 3

3.2 Inverter

A simple inverter was designed as part of the PLL. The most interesting part of

an inverter is at what input voltage does the output switch values. In order to test this, a

Phase

Detector
Loop
Filter

Voltage
Controlled
Oscillator

Input

Output

voltage source was connected to that part of the chip and very slowly from 5V down to

0V while recording the output voltage along the way.

Figure 4

As is ill ustrated in Figure 4 the actual chips, overlapping each other to form the

left hand curve, switch values at about 2.3V whereas the simulated data switches at about

2.6V. The lines and slopes drawn on top of the data indicates how good the inverter is

from 4.5V to 0.5V these correspond to the 90% and 10% of possible inputs. The steeper

the slope, the better the performance. Overall , all five chips tested were very consistent

with each other, as shown by the overlapping, and the result was similar to the expected

case.

3.3 Digital Buffer

A digital buffer was also included on the PLL. A digital buffer is meant to take an input

voltage and make it either a logical one (‘1’) or a logical zero (‘0’) . In doing this, the

maximum amount of current can be delivered to the next part of the chip. Like the

inverter the interesting part of a digital buffer is at what voltage the output changes.

Ideally everything less than 2.5V would be ‘0’ , and everything greater or equal would be

‘1’ .

Once again all five chips were very consistent with one another. If the input was

less than 2.6V the output was ‘0’ . Also, if the input was greater than 2.7V a ‘1’ was

produced. However, within the range of 2.6V to 2.7V the output oscill ated too much to

get a stable output. This means that 0.1V out of 5V are invalid, or 98% of all possible

input voltages 0V to 5V are valid. Since these middle voltages will probably never be

imputed, this design is effective.

3.4 Exclusive Or Phase Detector

The exclusive or phase detector that was included on the chip works like a typical xor

gate. The xor gate can be used with bits or with digital signals as in this case. The

purpose of this phase detector is to synchronize the input and output signals. One input is

the data signal, and the other is the previously gathered signal. The output then is the

clock signal which will be at the same frequency at some phase angle due to propagation

delay through the chip. All five chips worked because they matched the theoretical

results found in Table 1.

Input1 Input2 Out

‘0’ ‘0’ ‘0’

‘0’ ‘1’ ‘1’

‘1’ ‘0’ ‘1’

‘1’ ‘1’ ‘0’

Table 1

3.5 Low Pass Filters

Another part of the student designed PLL are two low pass filters. The purpose of

this component is to filter out any high frequencies, such as harmonics, that inhibit the

circuit from operating correctly. The bode plot below shows what one internal simple

low pass filter with a resistance of 50K ohms and a 10pf capacitor output.

Figure 5

The upper data points are the five chips and the line near the bottom is an external low

pass filter. However, the internal filters were not as good as anticipated. Since the

internal filters leveled off quicker than desired, external filters were used to test the entire

loop as discussed later.

3.6 Voltage Controlled Oscil lator I

The fifth component of this custom PLL is a voltage controlled oscill ator (VCO),

of which there were two types implemented. A VCO is a circuit that outputs a digital

square wave, whose frequency is a function of the input voltage. Given that frequency

depends on voltage, the easiest case to manage is a linear one, however, that is rarely the

case over a given spectrum.

As seen in Figure 6 the data observed on the five chips, the lower data points

(upper is the simulated result), resemble a logarithmic function. While the entire function

is not linear, input voltages from 1.5V to 2.5V make a pretty good line as shown by the

linear regression. Since this particular PLL was designed around 10 MHz, and the VCO

is linear above and below the design frequency, VCO I should work fine when integrated

into the entire loop.

Figure 6

3.7 Voltage Controlled Oscil lator II

VCO II works under the same premises as VCO I, but it can be made linear over a

larger range through the use of external resistors as parameters. Figure 7 shows several

different pairs of resistor values for a single chip. Through observation the longest

linearity over the desired range occurs when Rmin is a short circuit, and Rmax is a open

circuit (see black triangles). Due to its wide range, VCO II would seem to be the obvious

choice to put into the full l oop; however, there exist tradeoffs.

Figure 7

3.8 Entire Loop

Finally, after all the components had been tested individually, the entire loop was tested.

The entire loop consisted of the xor phase detector, connected to a low pass filter

(R=100K ohm, C=10pf), which is connected to VCO I. The input goes into the unfill ed

xor input, and the output is pulled off the xor output before the filter. In order to test each

chip, the function generator was set at 10MHz initially in order to get a lock. Then the

frequency was increased until it was unstable or gained the wrong frequency (upper

limit). Likewise, a lock was gained and then the frequency was decreased until the same

thing happened (lower limit). Finally, when at both extremes the frequency would be

increased or decreased respectively until they approached 10MHz (upper and lower lock).

As shown in Table 2 all five chips were very similar, and everything turned out

close to expected. The locking limits were fairly close to 10MHz. While the upper and

lower limits correspond closely with the linear upper and lower limits of VCO I as

expected.

(MHz) A B C D E

Upper

limit

13.6 13.6 13.5 13.6 13.9

Lower

limit

2.4 2.3 2.4 2.1 2.6

Upper

lock

12.4 12.1 12.2 12.2 12.6

Lower

lock

9.7 9.2 9.3 9.5 9.5

Table 2

The next step was to test the complete loop using VCO II instead of VCO I. In

theory this should have increased the range over which the PLL would lock. However,

there is a tradeoff f or range, stabili ty. The first stabili ty issue arose when there was

diff iculty getting a lock even at 10MHz. This was a problem because this design is able

to lock onto harmonic frequencies causing the output frequency to be wrong. And even

when a lock was achieved, the PLL would lock on harmonics almost randomly as the

frequency was swept.

CHAPTER 4

Conclusions

Throughout the entire testing process all five chips were very consistent with one

another. Most of the time they were so close that it was hard to tell one set of data from

another without zoom. In addition, the simulations were pretty close to the data gathered.

While shifts occurred in several tests, these were probably due to errors with the

simulating parasitics. Finally, while the VCO II was to unstable to be tested, the entire

loop met the 10MHz specification for lock on when VCO I was used.

CHAPTER 5

Future Work

The next step in developing this testing platform is to incorporate it with a probe

station so that dies as well as packaged chips can be tested. Also, the linear frequency

sweep can be used as a subroutine so that a logarithmic frequency sweep can be made.

Lastly, easier, more automated testing could be done on packaged integrated circuits if a

piece of hardware was created to route a given pin to a certain instrument. This would

allow input and output pins to be changed using software and a device rather than

physically moving the connections.

REFERENCES

[1] Agilent 54621A/22A/24AOscill oscopes and Agilent 54621D/22D Mixed-Signal

 Oscill oscopes Programmer’s Guide, August 2000

[2] Atkinson, Brandon. Bethel, Ryan. Silvestre, Conrad. PLL Group. 12/19/00

[3] Bethel, Ryan. Testing of the Integrated PLL. 5/17/01

[4] http://www.ni.com/labview/what.htm

 APPENDIX A

Linear Frequency Sweep

