8-bit Digital to Analog Converter Testing

Jason Beaulieu

ABSTRACT

An 8-Bit Current Steering DAC operating from three supplies of 5v, 2.5v and 3.5v will be tested. The
8-bit binary input works with 0-5v logic, and the clock can be as high as 25MHz. The common-mode
voltage Vem runs from a 3.5v rail, and the positive input of the Op Amp from a Vref = 2.5v reference.
The design was manufactured in a 0.5um AMI C5N process.

IT

Test Procedures

I-A Device Pin Out

CONTENTS

I-B Test 1: Static Power Dissipation

I-C Test 2: DAC Operation

Appendix A

I. TEST PROCEDURES

The following section discusses the procedures performed for testing of the physically implemented
chip.

A. Device Pin Out
The following figure shows a pin out of the chip.

ne]2 U 40[] GnD
Ne []2 39[] nc
ne []3 38[] nc
Ne []a 37[] nc
ne [s 361 nc
ne [s 35[] vour
ne [7 341 nc
NC[S 33] NC
Ne []o 32[] vem
Ne [10 31[] Nc
N []11 30[] ne
87 []12 29[] vRrer
s6 [|13 28[] nc
g5 []14 271 ax
B4 []1s 26[] 80
83 16 251 nc
Ne []17 24[] nc
B2 []18 23[] 81
NC [] 190 22[] Nc
Nc []20 21[] vop

Fig. 1. Package Pinout.

B. Test 1: Static Power Dissipation
This test is a simple test to determine if there are power supply shorts to ground.

¢ Procedure

Tie output pins low with dummy load of 100k(2, and input pins to ground.

Connect Vref and Vcem supplies to their respective pins.

Ramp VDD supply to 5V, observing current draw from power supply.

If current draw is excessive, it most likely means shorts in circuit design or faulty device. If
similar results are found on multiple devices suspect a short in design.

o Results
— The device draws OmA of current from 5V supply. This results in a idle power draw of OmW.

— This is resonable since when the circuit is in steady state the only load should be the opamp,
which only pulls 100¢A and was smaller than the meter could read.

C. Test 2: DAC Operation
This test verifies the DAC design.

o Procedure
— Connect Vref and Vem supplies to their respective pins.

— Apply 0-5V binary input signal to input pins.
— Vary binary input signal frequency.

— Observe output of DAC on oscilloscope. A low pass filter may be applied to output to smooth
edges.

o Results

— Binary Ramp: The following figure shows the schematic used to test the response of the DAC
to binary ramp. The input voltage source is running a 0-5v square wave at 2MHz. Figure 3
shows a oscilloscope screen capture of the node V,,;.

5V 5V
6 2 0 2t Vout
7 2 26 35 ou—ovout
s bf
Y o2 3.5V
RESET| |, 7 18 Vem
Q5 b3 32
3 Q6 bl 2.5V
— Q 2 15 @ :
—_ 7 b5 Vref
= W W weT
> Q8 b6 =
13 13
B Q9 b7)
o 12 12 >
Q
o1 Velk ok
10 27
0-5vru
8

an an

Fig. 2. DAC Ramp Output.

DAC Ramp Output

Voac out (V)

16 I 1 1 1 I I
-500 —-400 -300 —-200 -100 0 100 200
Time (usec)

Fig. 3. DAC Ramp Output.

The output looks pretty linear through all possible output combinations. The small glitches that
occur at the major bit transitions were seen during simulation and are a result of the latches used
in the design. When the input frequency is increased to greater than 2MHz the glitches become

I 1
300 400 500

larger and more can be seen. 2MHz seemed to be a decent operating frequency.

— Binary Sinewave: The following figure shows the schematic used to test the response of the
DAC to a binary sinewave. The input voltage source is running a 0-5v square wave at 15MHz.

The source code for the PIC16F628A is in Appendix A.

5 4 5y
1 RBO b0 2 \.
1K 6— —]2 st oV
rA2|, U e —
é rA3|, 8 18 3.5V
5 o RB3 b3 Vem
H z sl
I - 1(1) RBS b5 ij o) 2.5V
1K o B % 2 a 29| Veef T
g S RB7 b7 >
> 13 12 =
>
I_l ® Velk ek
I 10 o 27
— 0-5vru
5

Fig. 4. DAC Ramp Output.

|||—g

out

Figure 5 is an oscilloscope screen capture of the DAC output.

DAC Sine QOutput

oab-fo A e S

22_ B T . N B |

n
T
!

VDAC out (V)

18 1 1 1 1 L 1 1 1 1

Time (msec)

Fig. 5. DAC Sine Output.

The sinewave output looks very good. One thing to notice is the amplitude of the signal, it only
goes from 1.85v to 2.35v, but the simulations showed the output range being 1.5v-3.5v. The
reason for this was not explored, but could be attributed to an inaccurate simulation model, or
a fault in the manufacturing process.

II. APPENDIX A

e Source code for 8-bit_sine.c.

/*Jason Beaulieu*/

/*Description: Runs through a sequence of binary values to create a sine wave using a
DAC*/

/* to compile: picl -16f627 8-bit sine.c */

#include <pic.h>

#define buttonOn 0
#define _buttonl RA2
#define _button2 RA3
#define _debounce 20000
char i=0;

char inc=1;

long int j;

const int buf[256] = {0xf2, Oxf2, Oxf2, Oxfl, Oxfl, OxfO, Oxf0, Oxfo, Oxef, Oxef,\
Oxee, Oxed, Oxed, Oxec, Oxeb, Oxea, 0xe9, 0xe8, 0xe7, 0xe5, Oxed4, Oxe3, 0xel, 0xe0,\
Oxde, Oxdd, 0xdb, 0xd9, 0xd8, 0xd6, 0xd4, Oxd2, 0xd®, Oxce, Oxcc, Oxca, 0xc8, 0xc6,\
Oxc4, 0xcl, 0xbf, Oxbc, Oxba, 0xb8, 0xb5, 0xb3, 0xb0, Oxae, Oxab, 0xa9, 0xa6, 0xa3,\
0xa®, 0x9%e, 0x9b, 0x98, 0x96, 0x93, 0x90, 0x8e, 0x8b, 0x88, 0x85, 0x82, 0x7f, 0Ox7c,\
0x7a, 0x77, 0x74, 0x72, Ox6f, O0x6c, 0x69, Ox66, 0x64, 0x61, Ox5e, Ox5c, 0x59, 0x56,\
0x54, 0x51, 0x4f, Ox4c, Oxda, 0x47, 0x45, 0x43, 0x40, 0x3e, O0x3b, 0x39, 0x37, 0x35,\
0x33, 0x31, 0x2f, 0x2d, Ox2b, 0x29, 0x27, 0x25, 0x24, 0x22, 0x21, Ox1f, 0xle, Oxlc,\
0x1b, Oxla, 0x18, 0x17, 0x16, 0x15, 0x14, 0x13, 0x12, 6x11, 0x11, 0x10, 0x10, Ox0f,\
Ox0f, Ox0e, 0x0e, Ox0e, Ox0d, 0xOe, 0xO0d, OxOe, OxOe, 0x0d, Ox0e, Ox0e, 0x0f, OxOf,\
0x10, 0x10, 6x11, 0x12, 0x12, 0x13, 0x14, 0x15, O0x16, 0x17, 0x18, 0xla, Ox1lb, 0x1lc,\
Oxle, Ox1f, 0x21, 0x22, 0x24, 0x25, 0x27, 0x29, 0x2b, 0x2d, O0x2f, 0x31, 0x33, 0x35,\
0x37, 0x39, 0x3c, Ox3e, 0x40, 0x42, 0x45, 0x47, Ox4a, 0x4c, Ox4f, Ox51, 0x54, 0x56,\
0x59, 0x5c, 0x5f, O0x61, Ox64, 0x67, 0x69, O0x6¢c, Ox6f, 0x72, O0x74, Ox77, 0x7a, 0x7d,\
Ox7f, 0x82, 0x85, 0x88, Ox8b, 0x8d, 0x90, 0x93, 0x95, 0x99, 0x9b, O0x%e, 0xal, 0Oxa3,\
Oxab, 0xa9, Oxab, Oxae, 0xb0O, 0xb3, 0xb5, 0xb8, 0xba, 0xbd, Oxbf, Oxcl, 0xc4, 0xc6,\
0xc8, Oxca, 0xcc, Oxce, 0xd0, 0xd2, O0xd4, Oxd6, 0xd8, Oxda, Oxdb, Oxdd, Oxde, 0xe0,\
Oxe2, 0xe3, Oxe4, 0Oxe5, Oxe6, Oxe8, 0xe9, Oxea, Oxeb, Oxec, Oxed, Oxed, Oxee, Oxef,\
Oxef, OxfO, OxfO, 0xfl, Oxfl, Oxfl, Oxfl, Oxf2};

main()
{
//Initializations
OPTION=0x88;
CMCON = 0x07;
TRISA=0b11111111;
PORTA=0;
TRISB=0b00000000;
PORTB=0;
while(1){
if(_buttonl== buttonOn || _button2== buttonOn) {
if(_buttonl==_buttonOn) {
inc++;

}
if(_button2==_buttonOn) {

inc--;
}
j=0;
while(j< debounce){
i+
}
}
PORTB = buf[i];

i=i+inc;

