
DIRECT DIGITAL SYNTHESIZER
Design of ROM

Cyrus Miller

Department of Electrical and Computer Engineering

University of Maine

Orono, Maine



Table of Contents

1 Project Overview 1
2 Specification Overview 3
3 ROM Overview 4

3.1 ROM Structure 5
4 Schematics 7

4.1 64 Bit Memory Units 7
4.2 Tree Decoder Input 8
4.3 Tree Decoder 10
4.4 The Memory Structure 14
4.5 Pull-Up Network 16
4.6 Sense Amplifiers 17
4.7 Multiplexers 18
4.8 Latch 20

5 Layouts 22
5.1 64 Bit Memory Units 22
5.2 Tree Decoder Input 24
5.3 Tree Decoder 25
5.4 The Memory Structure 31
5.5 Pull-Up Network 33
5.6 Sense Amplifiers 34
5.7 Multiplexers 35
5.8 Latch 37

6 Sizing 38
7 Programming 41
8 Testing 42
9 Complete Chip 45

Appendix  Stored Memory 47



Table of Figures

Fig. 1.1  DDS Block Diagram 1

Fig. 1.2  Quadrant Diagram 2

Fig. 4.1  64 Bit ROM Schematic 7

Fig. 4.2.1  Tree Decoder Input Schematic 8

Fig. 4.2.2  Tree Decoder Input Schematic Overview 9

Fig. 4.3.1  Tree Decoder Schematic Overview 10

Fig. 4.3.2  Tree Decoder Schematic 11

Fig. 4.3.3  Tree Decoder 3rd Stage Schematic 12

Fig. 4.3.4  Tree Line Schematic 13

Fig. 4.4.1  Memory Cell One Schematic 14

Fig. 4.4.2  Memory Cell Zero Schematic 15

Fig. 4.5 Pull Up Network Schematic 16

Fig. 4.6 Sense Amp Schematic 17

Fig. 4.7.1 Multiplexer Schematic 18

Fig. 4.7.2 Multiplexer 2:1 Schematic 19

Fig. 4.8.1 Clocked D Flip Flop Schematic 20

Fig. 4.8.2 Clocked D Flip Flop Schematic Overview 21

Fig. 5.1  64 Bit ROM Layout 22

Fig. 5.2.1  Tree Decoder Input Layout 23

Fig. 5.2.2  Tree Decoder Input Layout Overview 24

Fig. 5.3.1 Tree Decoder Layout Overview 24

Fig. 5.3.2 Tree Decoder Stage 6 Layout 25

Fig. 5.3.3 Tree Decoder Stage 5 Layout 26

Fig. 5.3.4 Tree Decoder Stage 4 Layout 27

Fig. 5.3.5 Tree Decoder Stage 4 Layout 28

Fig. 5.3.7 Tree Line LayoutOverview 29



Table of Figures (continued)

Fig. 5.3.7 Tree Line Layout 29

Fig. 5.4.2 Memory Structure Layout 30

Fig. 5.4.2 Memory Structure Layout Overview 30

Fig. 5.4.3 Memory One Layout 31

Fig. 5.4.4 Memory One Layout Overview 31

Fig. 5.5.1 Pull-Up Network Layout 32

Fig. 5.5.2 Pull-Up Network Layout Overview 33

Fig. 5.6 Sense Amplifier Layout 33

Fig. 5.7.1 Two to One MUX Layout 34

Fig. 5.7.2 Two to One MUX Layout Overview 35

Fig. 5.8 Latch Layout 36

Fig. 6.1 Minimum Sized Memory Cell 37
Fig. 6.2 Height Restricted Tree Line 37
Fig. 6.3 Minimum Sized 64 bit ROM 38
Fig. 6.4 Minimum Sized 256 bit ROM 39
Fig. 7.1 ROM 0 40
Fig. 7.2 ROM 4 40
Fig. 8.1 Testing the Tree Decoder 42
Fig. 8.2 Testing the Tree Line 43
Fig. 8.3 Testing the Sense Amplifier 44
Fig. 9 Complete DDS Chip 45



http://www.eece.maine.edu/research/vlsi/2006/Miller/

http://www.eece.maine.edu/research/vlsi/2006/Miller/


1 Project Overview

We were tasked with building a Direct Digital Synthesizer (DDS), which play an important 
role in modern digital communications for sine wave generation. There were three different 
groups, each working on a separate building block in the development of this DDS.  The three 
building blocks are the Accumulator, the ROM and the Digital to Analog converter.  In this 
project, my group was to design a 256 bit ROM to store the sinusoidal values for DDS.  We 
were to accept 8 inputs from the Accumulator and output 9 bits to the DAC to effectively 
model the output of a sine wave.  The pieces involved were four 64 bit ROMs,  two 2:1 
multiplexers and a latch.  The multiplexers are used to select the right ROM and their outputs 
are latched using D flip-flops. This ROM receives its 8 bit input from a 12 bit, 50 MHz 
accumulator designed by Aravind Reghu. The latched outputs are then fed to two 10 bit 
Digital to Analog converters; one designed by Steve Fortune and the other designed by 
Raghu Tumati.

Fig. 1.1  DDS Block Diagram

1



As you can see in the diagram, the accumulator is just a repeating ramping input.  It 
goes through all of the memory cells stored in the ROM and then repeats, not giving a sine 
wave at all.  The sine wave comes from two things; the ROM itself and which quadrant the 
signal is in.  

Fig. 1.2  Quadrant Diagram

The ROM stores all of the values of quadrant 00, but nothing more.  It is possible to 
only have 90 degrees of sine information because of the repetitive nature of a sine wave; you 
only need to change certain things to account for each quadrant.  The ROM Pointer is used to 
decide which quadrant, and therefore which word line, should be accessed.  
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2 Specification Overview
A DDS system generates one or more frequency from a single reference frequency using 
digital logic. In this project, my objective was to design a 256 bit ROM which stores the 
amplitude values for each phase of DDS output waveform. A 256 bit ROM could be designed 
by using four 64 bit ROMs to both minimize the capacitance and also occupy less space on the 
chip.

Design Specifications
The different specifications that were given for the design of a ROM are as follows:

Name  Specification

Number of rows  256

Number of columns  9

Frequency  50 MHz

Voltage  0 to 5 V

Table 2.1  Design Specifications
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3 ROM Overview

To implement our design specification, we had to look realistically at what can fit into 
a chip.  The chip is about 900 microns by 900 microns square, so that directly impacted the 
design of our ROM.  We needed to break the 256 rows of memory up into four 64 bit ROM 
blocks in order to fit; this also helps lower the capacitance on the lines as well.

To make a 64 bit ROM, we would need the 6 Least Significant Bits coming from the 
Accumulator.  By using these 6 bits, we could make a tree decoder capable of accessing one of 
64 different rows.  Each time a signal is used, the output is split to either a high or low signal. 
After using 6 of these signals, the total output can encompass any one of 64 rows, or 26.  

To link these four blocks of ROM together, a two stage Multiplexer was needed.  The 
ROM's themselves would output 10 bits each, on every clock cycle, and these outputs would 
go into the first stage.  ROM A and ROM B would go into one, ROM C and ROM D the other. 
The 7th least significant bit is used to determine which of these is passed along; the output is 
sent to the 2nd stage.  Here either (A or B) or (C or D) is chosen, using the Most Significant Bit 
to make this choice.  By using this method, one can accurately choose which of the four 
ROM's to access and which row in that ROM to access.
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3.1 ROM Structure

The basic ROM structure consists of grid-like building blocks, enabling ROM's of any 
logical size to be created without any extra design work involved after the initial setup. 
These building blocks are broken into four categories; Tree Decoder, Memory Array, Sense 
Amplifiers and Multiplexers.

The best way to begin explaining the ROM is by describing the Memory Array.  As our 
goal was a 256 ROM with a 9 bit output, we will start with the identical 64 bit ROM array. 
The Memory stored in these ROM's consists of 64 rows with 9 columns; each row is called a 
“Word” and each column a “Bit”.  Whatever is stored in these different memory cells can be 
accessed at any time and also need to be programmed to be accurate.

To access these cells a tree decoder is necessary.  The tree decoder takes the 6 least 
significant bits from the accumulator and uses it to control 6 stages.  Using these stages, we 
split the output 32 times to create a possibility of 64 different rows.  This is how we can select 
an individual row, or alternatively, word line.
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Once these word lines are activated, the data stored on the bit lines is accessible by the 
sense amplifier at the bottom of the ROM.  These sense amp's are used just to increase the 
signal, purifying any distortion and re-centering it according to the voltage rails that are in 
use.  In our case, this means the sense amp decides whether the signal bit is high or low and 
then outputs either 0V or 5V accordingly.  

The output coming from these sense amps go directly into the multiplexers.  As 
mentioned before, ROM A and B share a MUX while ROM C and D share the other.  After the 
first stage, the two multiplexers both output to the third, which is controlled by the Most 
Significant Bit.  This output is determined both by which ROM is selected and which word 
line in the ROM is selected; it is the final output of the ROM.  From here, it goes to the latch 
and is latched before being sent to the DAC.
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4 Schematics
4.1 64 bit Memory Units
Each 64 bit memory unit is made up of 5 different parts; Inputs, Tree Decoders, the 

Pull-Up Network, Memory Cells and the Sense Amplifiers.  The Inputs take the signal from 
the accumulator and invert it and both signals are propagated through the tree decoder.  This 
in turn controls the decoder and selects which row of memory to access.  When accessed, the 
Pull-Up Network gives a high voltage to each bit line unless there is an NMOS circuit stored 
in one of the memory cells.  If an NMOS exists, it pulls the bit line low.  These bit lines are 
connected to the sense amplifiers; the sense amps reset the signal to either a pure low or a 
pure high, outputting to a later stage in the ROM.

Fig. 4.1  64 Bit ROM Schematic
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4.2 Tree Decoder Input
There are 7 inputs to the tree decoder; 6 signal lines and Vdd.  Vdd is the input to the 

very first stage, giving it a steady 5 volt signal to propagate.  The other 6 signal lines are the 6 
least significant bits coming from the accumulator.  These same signal lines go to all four 64 
bit ROM's; all select the same row in memory.  The two most significant bits are used to 
choose which ROM is selected; that is how we were able to fit a 256 bit ROM in a rather tight 
space.  

Fig. 4.2.1  Tree Decoder Input Schematic 

The six signal lines are inverted and both the signal and its inversion are required for 
the tree decoder.  They are both used in selecting which output is high; we originally had one 
signal, but this required us to use a complementary CMOS design.  Using both signal lines 
allows us to ditch the PMOS and have an easier implementation.
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Fig. 4.2.2  Tree Decoder Input Schematic Overview
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4.3 Tree Decoder
The Tree Decoder is the means by which a particular row in memory is selected.  There 

are six stages to it; all are identical except for the third stage, which is designed to keep the 
output from floating.  Each instance of the tree decoder has an input that is either high or low; 
if it is low, nothing will output but it works in the same way.  When the input is high, the 
decoder looks to the signal bit to find out whether to make output a high or a low.  This high 
signal is sent in a direct path through six levels of the tree decoder to its final destination; a 
row in memory.  

Fig. 4.3.1  Tree Decoder Schematic Overview
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To propagate this high signal, two NMOS transistors are used in the circuit.  They both 
are connected to the input, with their output connected to either Output or Output bar.  To 
create the output, the signal line is connected to the gate of the NMOS transistor; when the 
signal is high it turns on, making the output high as well.  If the signal is low, the NMOS 
turns off and the output is low.  However, when the signal line is low, its inverse is high, and 
that is what is connected to the gate of the other NMOS.  This is how Output bar is created; 
whenever the signal switches from high to low, one transistor turns on while the other turns 
off, with a negligible overlap between the two.  

Fig. 4.3.2  Tree Decoder Schematic
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For the third stage of the tree decoder, two extra NMOS transistors are added; one to 
the Output and one to the Output bar.  They are both used to ground the outputs; their gates 
are connected to the signal that is opposite of the output, so whenever the output is low the 
transistors turn on.  This guarantees that the output is not floating; it pulls it to ground and in 
doing helps lessen the dampening to the signal.

Fig. 4.3.3  Tree Decoder 3rd Stage Schematic
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At the end of the Tree Decoder, a very important combination of devices is connected. 
To compensate for the possibility of a floating output, another NMOS transistor is attached to 
the output.  The output line is attached to both its source and its gate, with the drain attached 
to ground.  This requires that a voltage source remain high.  Any errant signals would trigger 
the NMOS to turn on and give a path to ground, draining any voltage from the line.  If it is a 
true positive, however, the signal will continue to the offset inverter.

Fig. 4.3.4  Tree Line Schematic

The offset inverter was sized with its NMOS transistor six times larger than minimum 
sized, while the PMOS remained minimum sized.  This gives it a lower threshold voltage, 
allowing it to turn on at a lower voltage level.  This is important because the signal is 
dampened by the time it gets to this point; the voltage high level decreases from the 5 volts at 
Vdd to about 3.8 volts.  Switching at a lower level correctly reflects the midpoint of the signal; 
the second inverter inverts the signal and resets the midpoint to 2.5 volts.  The combination of 
these two allow the signal to go from 0 volts to 5 volts again, which is important for the sense 
amplifier.
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4.4 The Memory Structure
The  Memory Structure is what takes the information provided by the tree decoder and 

outputs the selected stored memory bits.  Each row is called a word line and a properly 
working tree decoder only selects one word at a time.  The number of output bits is equal to 
the number of columns; each output is connected to every memory cell in its column by the 
bit line.  The way we implemented this is   if no word is selected, the bit lines will all be high. 
There is a difference in trying to send a low or a high signal to the sense amplifiers-- we chose 
a high to be our norm, meaning that our memory has a structure of lines and bits without 
anything connecting between them.  Whether the word line is chosen or not, the bit line 
doesn't connect to it and so doesn't care.  To have a low output, however, requires an NMOS 
transistor in each memory cell.  This transistor is connected to both the bit line and the word 
line, giving the bit line a path to ground.  The word line is attached to the gate of the 
transistor; whenever the word line goes high, the gate is high and the NMOS turns on.  This 
in turn pulls the Bit Line low, so the output seen at the sense amplifier is zero.  

Fig. 4.4.1  Memory Cell One
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Fig. 4.4.2  Memory Cell Zero
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4.5 Pull-Up Network
The Pull-Up Network is a simple PMOS transistor.  Its source is Vdd, its drain is the bit 

line and its gate is connected to ground.  This means that it is always on, but it is a necessary 
safeguard due to current considerations.

Fig. 4.5 Pull Up Network Schematic
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4.6 Sense Amp
The sense amp works in the same way that the offset inverter in the tree line does.  It 

consists of two minimum sized inverters in series, resetting the output to either a pure high or 
a pure low.  The sense amp does have an offset inverter, but it wasn't necessary to change 
sizes; the switching midpoint is the same as it should be.  The only reason for the sense amp, 
in our situation, was that the high signal was not a pure high.  It dropped down by at least a 
volt, so to pull it back up and give a clean output, the inverters are there.

Fig. 4.6 Sense Amp Schematic
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4.7 Multiplexers
The Multiplexers are in two stages, with each stage being identical.  The two 

multiplexers in the first stage accept two sets of 9 inputs and output 9 bits to the second stage. 
The second stage chooses which of the first multiplexers to pass on to the output.

Fig. 4.7.1 Multiplexer Schematic
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Fig. 4.7.2 Multiplexer 2:1 Schematic
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4.8 Latch
The outputs from the multiplexer are latched using clocked D flip-flops. The edge 

triggered D flip-flop can be easily constructed from the RS flip-flop. One essential point about 
the D flip-flop is that when the clock input falls to logic 0 and the outputs can change state, 
the Q output always takes on the state of the D input at the moment of the clock edge. This 
circuit has two D latches in a master- slave configuration driven by a clock. The different logic 
circuits used in this design are 2 inverters, 4 AND gates and 4 NOR gates. The sizing of the 
transistors was done for each of this digital logic. Fig 2.5.1 shows the schematic view of the D 
flip-flop used for latching.

Fig. 4.8.1 Clocked D Flip Flop Schematic
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Fig. 4.8.2 Clocked D Flip Flop Schematic Overview
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5 Layouts
5.1 64 bit Memory Units
The completed 64 bit Memory Units are tall and skinny; the limiting factor in sizing 

was the height of the memory cells.  The height and width were the same, but they only 
needed to be 9 units wide whereas they were 64 units tall. 

Fig. 5.1  64 Bit ROM Layout
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5.2 Tree Decoder Input
The Tree Decoder Input would typically be a very simple layout, but in our application 

we wanted to fit several in a very tight space.  It ended up fitting very nicely and is a very 
simple design.

Fig. 5.2.1 Tree Decoder Input Layout

Notice that the input bit from the top attaches to the gate and then continues through 
as its own output; this is the signal, the output of the inverter is the signal bar.  By using 
Metal 2 as we did, it allows each piece to be put in a grid while having all of the vertical metal 
2 strips overlap.  This comes into play when we lay out the tree decoder itself; by keeping the 
units very basic, arrays of tree decoders are very easily implemented.
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Fig. 5.2.2  Tree Decoder Input Layout Overview

5.3 Tree Decoder
The layout of the tree decoder becomes increasingly cluttered the more stages there 

are.  The minimum-sized stage 6 are crammed next to each other as tight as they can fit; it 
slowly expands as you go to the left, with Stage 1 being the entire length of the ROM.

Fig. 5.3.1 Tree Decoder Layout Overview
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The individual layouts for each stage are the same, with the only difference being the 
height involved.  Stage 5 has to be twice as tall as stage 6, so the lengths of the connecting 
wires is longer.  From stage 6 to 5 there is also a slight change as well; with more space to 
expand vertically, the units become less wide.  Following will be examples of the stages with 
the exception of Stage 1 and 2.  Both of these stages are identical to Stage 4 but their height 
makes them very hard to see. 

Fig. 5.3.2 Tree Decoder Stage 6 Layout
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Fig. 5.3.3 Tree Decoder Stage 5 Layout
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Fig. 5.3.4 Tree Decoder Stage 4 Layout
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Fig. 5.3.5 Tree Decoder Stage 4 Layout
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The Tree Decoder outputs each row into the Tree Line, as shown here:

Fig. 5.3.6 Tree Line Layout Overview

Fig. 5.3.7 Tree Line Layout

The hardest part in designing this was the height restrictions.  Because the height was 
meant to be the minimum height of each memory cell, it forced the width to increase 
tremendously.  The various components almost don't fit correctly, but they just manage to do 
so.  Notice also the strips of metal 2 going vertically; these connect all of the grounds and 
Vdd's together without requiring any special wiring when you use the Tree Line in your 
layout.  The same thing happened with the rest of the Tree Decoder; each signal bit, and its 
inversion, are automatically connected to the following decoder.  

29



5.4 The Memory Structure

The Memory Structure was the basic building block around which the rest of the ROM 
functioned.  With a network of bit lines and word lines, the Memory Structure looked like a 
grid.  

Fig. 5.4.1 Memory Structure Layout

Fig. 5.4.2 Memory Structure Layout Overview
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The stored zeros used the same physical structure but added an NMOS in the middle. 
This NMOS and it's properties are what controlled the overall size of the ROM-- there was no 
way to make it any smaller than we did.

Fig. 5.4.3 Memory One Layout

Fig. 5.4.4 Memory One Layout Overview
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5.5 Pull-Up Network

Fig. 5.5.1 Pull-Up Network Layout
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Fig. 5.5.2 Pull-Up Network Layout Overview

5.6 Sense Amplifiers

Fig. 5.6 Sense Amplifier Layout
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5.7 Multiplexers

Fig. 5.7.1 Two to One MUX Layout
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Fig. 5.7.2 Two to One MUX Layout Overview
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5.8 Latch

Fig. 5.8 Latch Layout
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6 Sizing
To achieve minimum sizing, the limiting factor must be minimized.  In this case, the 

limiting factor is the height of the individual memory cell; the smaller it is, the smaller the 
ROM will be.  This is due to the fact that there are 64 rows of memory, compared to only 9 
columns.  The smallest the memory cell can be is dependent on the NMOS transistor that has 
to fit within it; there is no way to avoid overlapping cells unless everything fits inside the 
block of memory.  Minimum sizing gives us Fig. 6.1.

Fig. 6.1 Minimum Sized Memory Cell

This minimum sized cell forms the basis for everything else; to achieve minimum size, 
all of the neighboring components must fit within the height or width dimensions as well. 
The Pull-Up Network and the Sense Amp both need to be 6.9 micron wide in order to fit; 
conversely the 6th stage of the tree decoder and the tree line can only be 6.9 micron high.

Fig. 6.2 Height Restricted Tree Line
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Fig. 6.3 Minimum Sized 64 bit ROM
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Fig. 6.4 Minimum Sized 256 bit ROM
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7 Programming
To make the ROM easier to implement and change, we added some extra symbols to 

help in the programming.  To do this, we grouped three bits together into a larger symbol, 
creating all of the values from 0 to 7.  These look like Figure 7.1.

Fig. 7.1 ROM 0

Fig. 7.2 ROM 4
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This allows faster programming and quicker modifications.  It also enables better 
troubleshooting as there are fewer cell blocks to identify as wrong.  The easiest way to 
program, using this technique, is to create an array of 64 rows and 3 columns of ROM 0.  This 
will completely fill up the ROM, then allowing you to modify each cell individually to change 
which value you would like.  This method saves a lot of time because there is no longer a 
requirement to line things up correctly; it is already properly lined up.
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8 Testing
Testing was done on every part of the ROM, troubleshooting and checking all 

components to make sure that it was fully functional.  Only three tests will be documented 
here; for the rest, go to Anusha Ramanujam's “ROM for Direct Digital Synthesizer” report at 
the following web site:

http://www.eece.maine.edu/research/vlsi/2006/Ramanujam/ECE547_Anusha.pdf

The three tests shown here are testing the Tree Decoder and testing the Sense 
Amplifier.  The Tree Decoder should switch as the inputs increment, thereby turning on one 
and only one row at a time while systematically increasing.  The test is shown in Figure 8.1.

Fig. 8.1 Testing the Tree Decoder
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Similarly, the Tree Line itself should work as described; you should see inputs coming 
in at a lower value than they should, but leaving at the desired value, as in Figure 8.2.

Fig. 8.2 Testing the Tree Line
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And finally, to test the Sense Amplifier, the output of the ROM should travel to the 
Sense Amp and be brought back up to the expected value.  This graph is taken from a larger 
test that was done, but this particular sense amp was the only one that changed, so the others 
were omitted.

Fig. 8.3 Testing the Sense Amplifer
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9 Complete Chip

Fig. 9 Complete DDS Chip
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Fig. 9 Pin Assignments
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Appendix

ROM D ROM C ROM B ROM A
0 000000010 011000101 101101010 111011001
1 000000101 011001000 101101101 111011010
2 000001000 011001011 101101111 111011011
3 000001011 011001110 101110001 111011100
4 000001110 011010001 101110011 111011101
5 000010001 011010011 101110101 111011110
6 000010100 011010110 101110111 111100000
7 000011000 011011001 101111010 111100001
8 000011011 011011100 101111100 111100010
9 000011110 011011111 101111110 111100011
10 000100001 011100010 110000000 111100100
11 000100100 011100100 110000010 111100101
12 000100111 011100111 110000100 111100110
13 000101010 011101010 110000110 111100111
14 000101101 011101101 110001000 111101000
15 000110001 011101111 110001010 111101001
16 000110100 011110010 110001100 111101001
17 000110111 011110101 110001110 111101010
18 000111010 011111000 110010000 111101011
19 000111101 011111011 110010010 111101100
20 001000000 011111101 110010100 111101101
21 001000011 100000000 110010110 111101110
22 001000110 100000011 110011000 111101111
23 001001001 100000101 110011010 111101111
24 001001101 100001000 110011011 111110000
25 001010000 100001011 110011101 111110001
26 001010011 100001101 110011111 111110010
27 001010110 100010000 110100001 111110010
28 001011001 100010011 110100011 111110011
29 001011100 100010101 110100100 111110100
30 001011111 100011000 110100110 111110100
31 001100010 100011011 110101000 111110101
32 001100101 100011101 110101010 111110101
33 001101000 100100000 110101011 111110110
34 001101011 100100010 110101101 111110111
35 001101110 100100101 110101111 111110111
36 001110001 100101000 110110001 111111000
37 001110101 100101010 110110010 111111000
38 001111000 100101101 110110100 111111001
39 001111011 100101111 110110101 111111001
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40 001111110 100110010 110110111 111111010
41 010000001 100110100 110111001 111111010
42 010000100 100110111 110111010 111111011
43 010000111 100111001 110111100 111111011
44 010001010 100111100 110111101 111111011
45 010001101 100111110 110111111 111111100
46 010010000 101000001 111000000 111111100
47 010010011 101000011 111000010 111111100
48 010010110 101000101 111000011 111111101
49 010011001 101001000 111000101 111111101
50 010011100 101001010 111000110 111111101
51 010011111 101001101 111001000 111111101
52 010100010 101001111 111001001 111111110
53 010100101 101010001 111001011 111111110
54 010101000 101010100 111001100 111111110
55 010101011 101010110 111001101 111111110
56 010101110 101011000 111001111 111111110
57 010110001 101011011 111010000 111111111
58 010110100 101011101 111010001 111111111
59 010110110 101011111 111010011 111111111
60 010111001 101100001 111010100 111111111
61 010111100 101100100 111010101 111111111
62 010111111 101100110 111010110 111111111
63 011000010 101101000 111011000 111111111
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